Магнитно-резонансная томография (МРТ) - история, метод, противопоказания

МТР
Магнитно-резонансная томография  — томографический метод исследования внутренних органов и тканей с использованием физического явления ядерного магнитного резонанса — метод основан на измерении электромагнитного отклика ядер атомов водорода на возбуждение их определённой комбинацией электромагнитных волн в постоянном магнитном поле высокой напряжённости.

История

Годом основания магнитно-резонансной томографии принято считать 1973, когда профессор химии Пол Лотербур опубликовал в журнале Nature статью «Создание изображения с помощью индуцированного локального взаимодействия; примеры на основе магнитного резонанса». Позже Питер Мэнсфилд усовершенствовал математические алгоритмы получения изображения.

Некоторое время существовал термин ЯМР-томография, который был заменён на МРТ в 1986 году в связи с развитием радиофобии у людей после Чернобыльской аварии. В новом термине исчезло упоминание на «ядерность» происхождения метода, что и позволило ему достаточно безболезненно войти в повседневную медицинскую практику, однако и первоначальное название также имеет хождение.

За изобретение метода МРТ в 2003 Питер Мэнсфилд и Пол Лотербур получили Нобелевскую премию в области медицины. В создание магнитно-резонансной томографии известный вклад внёс также Реймонд Дамадьян, один из первых исследователей принципов МРТ, держатель патента на МРТ и создатель первого коммерческого МРТ-сканера.

Томография позволяет визуализировать с высоким качеством головной, спинной мозг и другие внутренние органы. Современные методики МРТ делают возможным неинвазивно (без вмешательства) исследовать функцию органов — измерять скорость кровотока, тока спинномозговой жидкости, определять уровень диффузии в тканях, видеть активацию коры головного мозга при функционировании органов, за которые отвечает данный участок коры (функциональная МРТ).

Метод

Аппарат для магнитно-резонансной томографии.

Метод магнитно-ядерного резонанса позволяет изучать организм человека на основе насыщенности тканей организма водородом и особенностей их магнитных свойств, связанных с нахождением в окружении разных атомов и молекул. Ядро водорода состоит из одного протона, который имеет магнитный момент (спин) и меняет свою пространственную ориентацию в мощном магнитном поле, а также при воздействии дополнительных полей, называемых градиентными, и внешних радиочастотных импульсов, подаваемых на специфической для протона при данном магнитном поле резонансной частоте. На основе параметров протона (спинов) и их векторном направлении, которые могут находится только в двух противоположных фазах, а также их привязанности к магнитному моменту протона можно установить, в каких именно тканях находится тот или иной атом водорода.

Если поместить протон во внешнее магнитное поле, то его магнитный момент будет либо сонаправлен, либо противоположно направлен магнитному моменту поля, причём во втором случае его энергия будет выше. При воздействии на исследуемую область электромагнитным излучением определённой частоты, часть протонов поменяют свой магнитный момент на противоположный, а потом вернутся в исходное положение. При этом системой сбора данных томографа регистрируется выделение энергии во время «расслабления», или релаксации предварительно возбужденных протонов.

Первые томографы имели напряженность магнитного поля 0,005 Тесла, однако качество изображений, полученных на них было низким. Современные томографы имеют мощные источники сильного магнитного поля. В качестве таких источников применяются как электромагниты (до 9,4 T), так и постоянные магниты (до 0,5 T). При этом, так как поле должно быть весьма сильным, электромагниты приходится остужать жидким гелием[источник не указан 29 дней], а постоянные магниты пригодны только очень мощные, неодимовые. Магнитно-резонансный «отклик» тканей в МР-томографах на постоянных магнитах слабее, чем у электромагнитных, поэтому область применения постоянных магнитов ограничена. Однако, постоянные магниты могут быть так называемой «открытой» конфигурации, что позволяет проводить исследования в движении, в положении стоя, а также осуществлять доступ врачей к пациенту во время исследования и проведение манипуляций (диагностических, лечебных) под контролем МРТ — так называемая интервенционная МРТ.

Для определения расположения сигнала в пространстве, помимо постоянного магнита в МР-томографе, которым может быть электромагнит, либо постоянный магнит, используются градиентные катушки, добавляющие к общему однородному магнитному полю градиентное магнитное возмущение. Это обеспечивает локализацию сигнала ядерного магнитного резонанса и точное соотношение исследуемой области и полученных данных. Действие градиента, обеспечивающего выбор среза, обеспечивает селективное возбуждение протонов именно в нужной области. Мощность и скорость действия градиентных усилителей относится к одним из наиболее важных показателей магнитно-резонансного томографа. От них во многом зависит быстродействие, разрешающая способность и соотношение сигнал/шум.
Наблюдение за работой сердца в реальном времени с применением технологий МРТ.

Современные технологии и внедрение компьютерной техники обусловили возникновение такого метода, как виртуальная эндоскопия, который позволяет выполнить трёхмерное моделирование структур, визуализированных посредством КТ или МРТ. Данный метод является информативным при невозможности провести эндоскопическое исследование, например при тяжёлой патологии сердечно-сосудистой и дыхательной систем. Метод виртуальной эндоскопии нашёл применение в ангиологии, онкологии, урологии и других областях медицины.

МР-ангиография

Магнитно-резонансная ангиография (МРА) — метод получения изображения сосудов при помощи магнитно-резонансного томографа. Исследование проводится на томографах с напряжённостью магнитного поля не менее 1.0 Тесла. Метод позволяет оценивать как анатомические, так и функциональные особенности кровотока. МРА основана на отличии сигнала подвижной ткани (крови) от окружающих неподвижных тканей, что позволяет получать изображения сосудов без использования каких-либо рентгеноконтрастных средств. Для получения более четкого изображения применяются особые контрастные вещества на основе парамагнетиков (гадолиний).

Противопоказания

Существуют как относительные противопоказания, при которых проведение исследования возможно при определённых условиях, так и абсолютные, при которых исследование недопустимо.

Абсолютные противопоказания
 
  • установленный кардиостимулятор (изменения магнитного поля могут имитировать сердечный ритм).
  • ферромагнитные или электронные имплантаты среднего уха.
  • большие металлические имплантаты, ферромагнитные осколки.
  • кровоостанавливающие клипсы сосудов головного мозга (риск развития внутримозгового или субарахноидального кровотечения)
Относительные противопоказания
 
  • инсулиновые насосы
  • нервные стимуляторы
  • неферромагнитные имплантаты внутреннего уха,
  • протезы клапанов сердца (в высоких полях, при подозрении на дисфункцию)
  • кровоостанавливающие клипсы (кроме сосудов мозга),
  • декомпенсированная сердечная недостаточность,
  • беременность (на данный момент собрано недостаточное количество доказательств отсутствия тератогенного эффекта магнитного поля, однако метод предпочтительнее рентгенографии и компьютерной томографии)
  • клаустрофобия (панические приступы во время нахождения в тоннеле аппарата могут не позволить провести исследование)
  • необходимость в физиологическом мониторинге
Также МРТ противопоказана (или время обследования должно быть значительно сокращено) при наличии татуировок, выполненных с помощью красителей с содержанием металлических соединений. Широко используемый в протезировании титан не является ферромагнетиком и практически безопасен при МРТ; исключение — наличие татуировок, выполненных с помощью красителей на основе соединений титана (например, на основе диоксида титана).

Дополнительным противопоказанием для МРТ является наличие кохлеарного импланта - протезов внутреннего уха. МРТ противопоказана при некоторых видах протезов внутреннего уха, так как в кохлеарном импланте есть металлические части, которые содержат ферромагнитные материалы.

 

Статьи по теме: МРТ

 

Получить консультацию Специалиста

Еще в разделе ДИАГНОСТИКА

 


МРТ. Физические основы

 

Банер

Карта